ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

A new multi-gram synthetic route to labeling precursors for the $D_{2/3}$ PET agent 18 F-fallypride

Kwangho Kim, Nicole R. Miller, Gary A. Sulikowski, Craig W. Lindsley*

Department of Chemistry and Pharmacology, Institute of Chemical Biology, Vanderbilt University, 802 Robinson Research Building, Nashville, TN 37235-1822, USA

ARTICLE INFO

Article history: Received 21 June 2008 Revised 15 July 2008 Accepted 16 July 2008 Available online 20 July 2008

Keywords: PET D2 antagonist Imaging agent Fallypride

ABSTRACT

This Letter describes a new multi-gram synthetic protocol for the preparation of the classic tosylate labeling precursor for the $D_{2/3}$ PET agent [18 F]fallypride. In the course of our studies, we also discovered two novel labeling precusors, the previously undescribed mesylate and chloro congeners of fallypride.

© 2008 Elsevier Ltd. All rights reserved.

Dysfunction in dopaminergic neurotransmission has been implicated in a number of neuropsychiatric disorders including Parkinson's disease, Alzheimer's disease, schizophrenia, and Huntington's disease. ¹⁻⁴ The discovery and development of small molecule ligands that can selectively target dopamine receptors (D₁–D₄), transport, and synthesis is central to the development of therapeutic agents for the treatment of these complex diseases. ¹⁻⁴ The D₂ receptor antagonists fallypride (FP) **1** and desmethoxy fallypride (DFP) **2** stand out due to their selectivity, affinity, and reversibility (Fig. 1). ^{5,6}

The corresponding [18 F] and [11 C]-labeled analogs of **1** have found utility as positron emission tomography (PET) agents. $^{7-13}$ In particular, [18 F]FP has been employed to study D $_{2/3}$ receptor occupancy and density in neuropsychiatric disorders and aging in both preclinical species and in humans. $^{7-15}$

The Vanderbilt Institute of Chemical Biology (VICB) established a Synthesis Core to provide synthetic and medicinal chemistry resources to the biomedical research community across the Vanderbilt campus, including the Vanderbilt Imaging Center. On one occasion, a request was made for a multi-gram synthesis of a labeling precursor for [18F]fallypride **4**, classically accessed by ¹⁸F displacement of the corresponding tosylate **3** (Scheme 1).^{7–15} Upon examination of the literature, we were dismayed to see that the classical published synthetic routes to **3** were performed on milligram quantities of material, employed preparative TLC for purification and afforded 30–50% yields for every step.^{8,9} In 2007, Rosch and co-workers reported a large-scale synthesis utilizing a mixed

anhydride coupling between the corresponding substituted benzoic acid **5** and proline-derived amine **6** to afford **7** in an unspecified yield (Scheme 2).¹⁶ Earlier de Paulis reported hydrob-

Figure 1. Structures of the $D_{2/3}$ antagonists fallypride (FP), **1**, and desmethoxy fallypride (DFP), **2**.

Scheme 1. Synthesis of [¹⁸F]fallypride **4**. Reagents: (a) ¹⁸F, Kryptofix, K₂CO₃, CH₃CN.

^{*} Corresponding author. Tel.: +1 615 322 8700; fax: +1 615 343 6532. E-mail address: craig.lindsley@vanderbilt.edu (C.W. Lindsley).

Scheme 2. Existing routes to alcohol **7.** Reagents: (a) CICO₂Et, Et₃N; 9-BBN, H₂O₂, NaOH; (c) TFA, DCM; (d) allyl bromide, K₂CO₃, DMF.

oration–oxidation of allyl benzamide **8** to give alcohol **9** and following deprotection and N-allylation provide alcohol **7**.¹⁷ In examining these synthetic routes, we became concerned with functional group compatibility under these reaction conditions and therefore turned our attention to developing a new synthetic route employing a protected derivative of benzoic acid **5** as a coupling partner.

To this end, alcohol **5** was derived from commercially available methyl benzoate 10 in three steps starting with O-methylation to afford benzoate 11 in 95% yield (Scheme 3). Hydroboration of 11 followed by treatment with basic peroxide then gave alcohol 12. Following ester hydrolysis (92%), benzoic acid 5 was treated with TBSCl and imidazole in DMF to provide TBS protected alcohol 13 in good overall yield. Next, the coupling of 13 with amine 6 (derived in two-steps from L-prolineamide) was examined. Optimal conditions employed EDCI in combination with HOBt and i-Pr2NEt as base to provide 14. Under these conditions, the coupled product was obtained in yields ranging from 45% to 64%. Finally, removal of the TBS group with TBAF delivered alcohol 7. Standard conditions then provided the tosylate 15, the immediate precursor to [18F]fallypride 4 in seven steps with an overall yield of 11%.¹⁸ Importantly, all the steps leading to 14 were conducted on multigram scales with standard column chromatographic purification. while the final deprotection and tosylation steps were run on 1-2 gram scales (See Supporting Information).

The silyl protection of **5** and subsequent deprotection steps were a necessity for the multi-gram synthesis of **15**. All attempts to perform the amide coupling of **5** and **6**, with multiple peptide coupling reagents (EDCI, HATU, TFFH, etc) afforded poor results (yields less than 20%) and isolation of the extremely polar **7** proved difficult. Standard normal phase chromatography was insufficient on large scale to deliver pure **7** for the tosylation step. Thus, we were required to pursue preparative reverse phase chromatography with multiple injections, resulting in large volumes of $CH_3CN/H_2O/TFA$ solutions to dry down with longer turn-around. While the protection/deprotection sequence adds two chemical steps, the overall yields and efficiency to access pure **15** are markedly improved.

The major problematic step in the synthesis was the amide coupling between the electron-rich, hindered benzoic acid **13** and

Scheme 3. Improved synthetic route to **15.** Reagents: (a) Mel, K₂CO₃, Me₂CO, 95%; (b) i–9-BBN, THF, ii—NaOH, H₂O₂, 92%; (c) NaOH, THF (aq.), 92%; (d) TBSCl, ImH, DMF, 75%; (e) **6.** EDCI, HOBt, *i*-Pr₂NEt, 45–64%; (f) TBAF, THF, 71%; (g) TsCl, DCM, pyridine, 44%.

Scheme 4. Synthesis of a novel labeling precursor CIFP 16 and fallypride 1. Reagents: (a) i-SOCl2, toluene, cat. DMF, ii-6, 31%; (b) TBAF, THF, reflux, 55%.

Scheme 5. Synthesis of a novel labeling precursor MsFP 17 and fallypride 1. Reagents: (a) i-MsCl, DCM, Et₃N; (b) TBAF, t-BuOH, reflux, 40% over two steps.

amine **6**—a historically problematic reaction. We evaluated a number of coupling reagents (PyBop, BOP, TFFH), but none afforded advantages over EDCI. One attempted coupling that led to a new entity involved the treatment of benzoic acid **13** with thionyl chloride (Scheme 4). Reaction of the intermediate acid chloride with amine **6** led to the isolation of previously unknown chloride **16**, the result of substitution of the TBS ether for a chloro group, a variation of the Silyl-Durst chlorination. ^{18,19} This new entity **16** (CIFP) was evaluated as a D2 antagonist, and afforded an IC₅₀ of 17.1 nM. With **16** in hand, we then evaluated its ability to serve as a labeling precursor in route to [18 F]fallypride **4**. Exposure of **16** to TBAF in THF provided a 55% yield of **1**, indicating that this new CIFP congener **16** is a viable labeling precursor for [18 F]fallypride **4**. Activity at the D₂ receptor was also confirmed for our synthetic **1** with an IC₅₀ of 5.0 nM, a value in agreement with literature reports.

Based on these results, we examined the literature further, and were surprised to find that the corresponding mesylate analog **17** (MsFP) had never been prepared. To evaluate this potential labeling precursor, we intercepted alcohol **7** from the deprotection of **14** and treated it with MsCl in DCM and generated **17** (MsFP); however, this material was labile and proved difficult to isolate. Therefore, we generated **17** (MsFP) in situ and immediately treated the reaction mixture with TBAF in *t*-BuOH at 85 °C to afford a 40% yield of **1** (Scheme 5), suggesting that **17** (MsFP) could also serve as a viable labeling precursor for the preparation of [¹⁸F]fallypride **4**.¹⁸

In summary, we have developed an improved, high yielding, and scalable synthetic route to the classical labeling precursor **15** for [18 F]fallypride **4**. During the course of this work, we discovered **16** (CIFP), a novel D_2 antagonist and viable labeling precursor for [18 F]fallypride **4**. This work also prepared and evaluated the previously unknown mesylate congener, **17** (MsFP), as a labeling precursor, and found that it too was viable. Further studies in this arena are in progress and will be reported in due course.

Acknowledgments

The authors thank the Vanderbilt Institute of Chemical Biology, the Vanderbilt Imaging Center (Dr. Ron Baldwin), and the Vanderbilt Department of Pharmacology for support of this research.

Supplementary data

Experimental procedures and analytical data for compounds **1**, **11-17** are provided. This material is available free of charge via the Internet at http://www.sciencedirect.com/science/journal/0960894X. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2008.07.065.

References and notes

- 1. Stoof, J. C.; Kebabian, J. W. Life Sci. 1984, 35, 2281.
- Carbon, M.; Ghilardi, M. F.; Fukuda, M.; Silvestri, G.; Mentis, M. J.; Ghez, C.; Moeller, J. R.; Eidelberg, D. Hum. Brain Mapp. 2003, 19, 197.
- 3. Chesselet, M. F.; Delf, J. M. *Trends Neurosci.* **1996**, 19, 417.
- 4. Seeman, P.; Bzowej, N. H.; Guan, H. C.; Bergeron, C.; Reynolds, G. P.; Bird, E. D.; Riederer, P.; Jellinger, K.; Tourtellotte, W. W. Neuropsychopharmacology 1987, 1, 5.
- 5. Grunder, G.; Siessmeier, T.; Piel, M.; Vernaleken, I.; Buchholz, H. G.; Zhou, Y.; Hiemke, C.; Wong, D. F.; Rosch, F.; Bartenstein, P. J. Nuc. Med. 2003, 44, 109.
- Siesssmeier, T.; Zhou, Y.; Buchholz, H-G.; Landvogt, C.; Vernaleken, I.; Piel, M.; Schirrmacher, R.; Rosch, F.; Schreckenberger, M.; Wong, D. F.; Cummings, P.; Grunder, G.; Barnstein, P. J. Nuc. Med. 2005, 46, 964.
- Grunder, G.; Landvogt, C.; Vernaleken, I.; Buchholz, H. G.; Ondraeck, J.; Siesssmeier, T.; Hartter, S.; Schreckenberger, M.; Stoeter, P.; Hiemke, C.; Rosch, F.; Wong, D. F.; Bartenstein, P. Neuropsychopharmacology 2006, 31, 1027.
- 8. Mukherjee, J.; Shi, B. Z.; Christian, B. T.; Chattopadhyay, S.; Narayanan, T. K. Bioorg. Med. Chem. 2004, 12, 95.
- Mukherjee, J.; Yang, Z-Y.; Das, M. K.; Brown, T. Nuc. Med. Biol. 1995, 22, 283.
- 10. Mukherjee, J. J. Fluorine Chem. 1990, 49, 151.
- (a) Mukherjee, J. Int. J. Appl. Radiat. Isotopes 1991, 42, 713; (b) Mukherjee, J.;
 Yang, Z-Y.; Copper, M. Eur. J. Pharmacol. 1992, 175, 363.
- Mathis, C. A.; Bishop, J. E.; Gerdes, J. M.; Whitney, J. M.; Brennan, K. M.; Jagust, W. J. Nuc. Med. Biol. 1992, 19, 571.
- (a) Kessler, R. M.; Mason, N. S.; de Paulis, T.; Ansari, M. S.; Schmidt, D.; Manning, R. G.; Votaw, J. R. *J. Nuc. Med.* **1992**, 33, 847; (b) Kessler, R. M.; de Paulis, T.; Ansari, M. S.; Schmidt, D.; Manning, R. G.; Votaw, J. R. *J. Nuc. Med.* **1993**, 34, 202P.
- Mukherjee, J.; Christian, B. T.; Narayanan, T. K.; Shi, B.; Collins, D. Brain Res. 2005, 1032, 77.
- Riccardi, P. R.; Li, M. S.; Ansari, D.; Zald, S.; Park, B.; Dawant, S.; Anderson, M.; Doop, N.; Woddward, E.; Schoenberg, D.; Schmidt, R.; Baldwin, R.; Kessler, R. Neuropsychopharmacology 2006, 31, 1016.
- Stark, D.; Piel, M.; Hubner, H.; Gmeiner, P.; Grunder, G.; Rosch, F. Bioorg. Med. Chem. 2007, 15, 6819.
- 17. de Paulis, T. Curr. Pharmaceut. Design 2003, 9, 673.
- 18. For full experimental details, see the Supplementary Data.
- 19. Oddon, G.; Ugen, U. Tetrahedron Lett. 1997, 25, 4407.